What Is The Best OCR Extraction Method On Printed Text?

By
Amit Jnagal
Founder & CEO

I spotted another interesting question on Quora related to machine learning & OCR technology, here's my answer:

I will give you a consultant’s answer - you may not like it but here goes - “It depends”.

The ‘best’ OCR extraction method depends on the context of what you are trying to extract. My guess is that you are not talking about the OCR process itself. But, rather how to extract features out of the text that OCR spits out. There are two broad approaches for extraction depending on whether you know the kind of data you are dealing with (invoices, tax docs, grocery labels, etc) or you do not:

DOMAIN-BASED OCR EXTRACTION

This approach helps when you know beforehand the kind of data extraction you are after. Let’s say you were trying to extract features of wines from a set of wine ratings and notes that you have OCR-ed. Before you can do the feature extraction, you may consider running topic modeling algorithms on a large collection of existing wine notes to figure out trends and topics. Once you build a learning model out of that you can deploy it on top of OCR extracted data. This will not only help you extract features but also will help in automatically fixing the OCR output of the text which the OCR engine reads incorrectly.

DATA BASED OCR EXTRACTION

In case your extraction case is generic and you are unlikely to know in advance what kind of data you will need to extract then the domain-based extraction does not work. The data could be an invoice or scanned page of a book. In this case, you need to build an unsupervised learning system and run a large volume of data through it. The system would need to use a number of signals - the source of the data, words in OCR data, meta tags on the file, geographical location, etc. to first take the best guess of categorizing the data in different buckets.

You should then build extraction models on top of each of these buckets. When a new document is OCR-ed, you try to categorize the document in an existing classification bucket based on matches. Once that classification guess is made then you run extraction algorithms based on that bucket. If it does not match any bucket then you create a new bucket and just do the base extraction. Rinse and repeat. Over time, the new bucket will also fill up with enough data. And then you can run domain-based extraction on top of that.

A lot of companies are using machine learning and natural language processing in innovative ways to solve OCR challenges for enterprises. But this is the basis of most feature extraction algorithms.

Hope this helps, have fun!

Frequently asked questions

What does your pricing model look like?

We price based on the annual volume of pages and complexity of document type.  We can get you preliminary pricing once we outlined a solution.  Let's do this.

To know more, book a 15-min session with an IDP expert

How can I try Infrrd before I commit to a full deployment?

Sure.  The first step is to schedule a guided demo where you get to jump into the thick of it.  After you explore our solution you can try a proof of concept. When you're ready, you can deploy the system to one use case.  Then more use cases.  Then across your enterprise.

To know more, book a 15-min session with an IDP expert

How does your system integrate with others in my enterprise?

We play nice.  Our solutions are API-based.  Your documents are feed into the solution using APIs. And extracted data is sent out through APIs.  We use REST APIs.

To know more, book a 15-min session with an IDP expert

Does your solution run in the cloud or on premise?

Our solution is cloud-native but is also design for premise deployments.  Your choice on how you want to deploy it.

To know more, book a 15-min session with an IDP expert

Does Infrrd run on mobile or desktop device?

Glad you asked.  Our data extraction process runs on servers.  We have found performance and accuracy decline when running on a desktop or mobile device. (Remember Infrrd is running a powerful AI stack).

To know more, book a 15-min session with an IDP expert

Does your system work out of the box or does it require training?

Common documents and use cases work out of the box.  The cool thing is your solution will improve as the system learns from your documents upfront and over time.

To know more, book a 15-min session with an IDP expert

How does your solution handle corrections?

Did you know no system is 100% accurate all the time?  When extraction errors occur you want to correct them.  We provide a simple UI that your business analyst will use to make corrections.

To know more, book a 15-min session with an IDP expert

Does your solution work with handwriting?

Our solution excels at data extraction from handwriting.  We've got proprietary methods and techniques that do the trick.  It's pretty cool.  See for yourself.

To know more, book a 15-min session with an IDP expert